网站首页企业百科 产品百科 技术百科 人物百科

不锈钢棒材 我有新说法
27 0
不锈钢棒材是由不锈钢钢锭,经过热轧或锻造而成的。不锈钢棒材的生产是随着不锈钢的开发而兴起的。由于不锈钢棒材的应用范围越来越广泛,如寒冷地区高层建筑的基础、高速公路旁的隔离网、家庭生活用品等,使不锈钢棒材的热轧生产得到很大发展,我国不锈钢产品的30%,国外只占8%-10%。随着石油、化工、能源及原子能、宇航、海洋开发等技术的迅速发展,对不锈钢提出了更高的综合性能要求,不仅要求有良好的耐蚀性,还要求有高强度、耐高温高压、防辐射、耐低温等性能,使不锈钢的品种类型得到进一步的开拓。

目录

不锈钢棒材简介

不锈钢棒材生产过程及分类

不锈钢棒材是由不锈钢钢锭,经过热轧或锻造而成的。
按形状分大致可以分为:不锈钢圆棒、不锈钢方棒、不锈钢六角棒。
按表面处理分可分为:不锈钢黑棒、不锈钢酸白棒、不锈钢光亮棒、不锈钢研磨棒。

不锈钢棒材轧制常用炉型

常用几种炉型目前国内棒材或棒线生产线对合金钢及铬钢系列产品采用的热处理装备有:辊底炉(隧道炉)、台车炉、罩式炉、缓冷坑[1]

不锈钢棒材常见问题

由于无缓冷和退火设施,轧出的棒材直接暴露在空气环境中冷却,造成以下6大问题:①棒材表面产生表面裂纹,内部组织存在晶裂缺陷;②能源浪费、退火周期长;③生产物流组织不通畅,产品在现场频繁倒运,增加了运输成本,岗位工人劳动强度高,倒运过程对棒材产生损伤;④由于产品缺陷多,需逐个检验,检验工作繁重,增加检验成本;⑤产品供货周期长;⑥产品成材率低,顾客质量异议多[1]

不锈钢棒材生产标准

在不锈钢棒材轧制的标准方面,美、英、德、法、俄、日及国际标准比较*,其中美国标准尺寸公差。有关国家不锈钢热轧型材的标准有:美国ASTMA276《不锈钢及耐热钢棒和型材的标准规范》;美国ASTMA484/A484M《不锈及耐热钢棒、钢坯和锻件的一般要求》;德国DIN17440《不锈钢薄板、热轧带钢、线材、拉拔线材、钢棒、锻件和钢坯交货技术条件》;日本JlS64304《不锈钢棒》。八十年代前期,我国结合美国、日本、德国、前苏联和国际标准化组织(ISO)的有关标准,并重点参照日本JIS不锈钢棒标准,制定了不锈钢棒材的国家标准GB1220—92,同时参照国外标准,制定了不锈钢盘条的国家标准GB4356—84,使钢种系列更加完善,并采用了美国、日本等国际通用牌号,我国的某些不锈钢牌号与美国标准牌号是对应的,如表l。同时保留了我国常用牌号,使其与美国等发达国家的不锈钢牌号基本一致,通用性更强。与发达国家相比,标准本身的差距缩小了很多,但表面质量、尺寸公差较差,实物水平差距较大。

不锈钢棒材生产工艺

棒材生产线工艺流程:钢坯验收→加热→轧制→倍尺剪切→冷却→剪切→检验→包装→计量→入库。
小型棒材是由小型轧机生产的,小型轧机的主要类型分为:连续式、半连续式和横列式。目前世界上新建和在用的以全连续式小型轧机居多。当今流行的钢筋轧机有通用的高速轧制的钢筋轧机和4切分的高产量的钢筋轧机。连续小型轧机所用坯料一般是连铸小方坯,其边长一般为130~160mm,也有180mm×180mm的,长度一般在6~12米左右,坯料单重1.5~3吨。轧制线多为平-立交替布置,实现全线的无扭转轧制。机架的多少按照一个机架轧制一道的原则确定。轧机多为偶数道次组合,对于不同的坯料规格和成品尺寸有18架、20架、22架甚至24架的小型轧机,18架为主流。速度可调、微张力和无张力轧制是现代全连续式小型轧机的明显特点。粗轧和中轧的部分机架为微张力控制,中轧的部分机架和精轧机组为无张力控制,以保证产品的尺寸精度。连续式轧机一般设置6~10个活套,甚至有的多达12个活套。
棒材轧制是所有轧材中最容易实现的品种,它可以有多种方式。从三辊横列式,到扭转二重式,从各种半连续式到全连续式,都能生产棒材,但其产量、尺寸精度、成材率、合格率却都大不一样。三辊轧机刚度低,加热温度的波动必然带来严重的产品尺寸波动,加上横列式速度慢、轧制时间长,导致轧件头、尾温差加大,容易尺寸不一致,并且性能不均,产量很低,质量波动很大,优质率极低。全连续轧机一般采用平立交替,轧件无扭,事故少、产量高,可以实现了大规模的专业化生产和组织性能控制.同时轧机采用高刚度,控制自动化程度较高,使尺寸精度和合格率得到很大提高,尤其成材率提高,减少回炉炼钢的浪费。目前,棒材轧制多采用步进式加热炉、高压水除鳞、低温轧制、无头轧制等新工艺,粗轧、中轧向适应大坯料及提高轧制精度方向发展,精轧机主要是提高精度和速度。
与普碳钢热轧相比,不锈钢的轧制技术和工艺决窍,主要体现在锭坯的检查清理、加热方法、轧辊孔型设计、轧制温度控制和产品在线热处理等方面。
锭坯的检查清理
清理线包括:抛丸、红外线表面检查、超声波探伤及修磨砂轮机等。随着连铸水平的提高,如果连铸能生产无缺陷坯,可不加钢坯清理线。
加热方法
奥氏体不锈钢加热时组织稳定,不能通过淬火强化。这类钢具有良好的强度和韧性配合,低温韧性,无磁性,加工、成型和焊接性能好,但易产生加工硬化。同时,这类钢的导热性很低,在低温阶段塑性,因此加热速度可比铁素体不锈钢快,稍低于普碳钢的加热速度。
铁素体不锈钢加热时不发生相变,一般不能用热处理强化。这类钢具有三种脆性转变,即475℃脆性、a相析出脆性和晶粒长大引起的脆性,常采用退火后急冷以获得良好的性能。高Cr钢高温下抗氧化;对应力腐蚀不敏感;钢的强度较奥氏体不锈钢高;韧性随C、Ni含量的降低而提高;有强磁性;焊接性能差。这类钢具有良好的热加工性,但在低温阶段铁素体的塑性很低,又加上坯(锭)冷却时产生的残余应力和加热时产生的热应力方向一致(因加热和冷却时没有相变)能相互迭加,因而易产生热裂。所以坯(锭)在低温阶段应缓慢加热。钢锭的装炉温度不大于800℃,钢坯应不大于850℃。当含Cr量大于16%时,铸态组织非常粗大,易产生粗晶组织,经热加工破碎的晶粒,在温度大于950℃时有强烈长大的倾向,因在加热和冷却时不产生相变,所以长大的晶粒不能通过热处理方法来改变,同时这类钢是体心立方晶格的铁素体,再结晶温度低,再结晶速度大,经再结晶后钢的塑性也较好,热加工时变形抗力小,为了要获得所需的细晶粒组织,一般采用在较低温度下变形和控制在此温度下的变形量,加热温度一般为950℃~1000℃左右。
轧辊孔型设计
生产不锈钢棒材时,轧辊孔型一般采用椭圆一圆孔型系统,孔型设计时要考虑孔型有较强的可适应性,尽可能减少更换孔型和轧机的重新启动,即孔型可以适应多种产品,允许孔型有较大的间隙调整,使整个产品范围对预精轧机孔型变化的要求都降低到。
轧制温度控制
不锈钢轧制时,由于其变形抗力对温度变化相当敏感,特别在粗轧时,由于轧制速度低,变形功导致的温度上升不足以补偿轧件本身的温降,造成头尾温差大,对产品公差有不良影响,也会在轧件上产生表面缺陷和内部缺陷,影响最终产品性能的均匀性。为了解决上述问题,加热好的坯料经粗轧轧制后,进入设在粗轧和中轧间的燃油(或燃气)保温炉或感应式再加热炉,温度均匀化之后再进入中轧机组进行轧制。为了控制精轧和预精轧过程中轧件升温过高,一般在这两组轧机后及精轧机组机架间设有水冷装置(水箱)。因此,这样可以实现对晶粒度的合理控制,以便改善最终产品的技术性能。
不锈钢的在线热处理
过去不锈钢棒材的热处理都是离线进行,随着科学的发展和轧制工艺研究的不断深入,现代不锈钢热处理也较多采用在线进行。生产棒材时,对奥氏体、铁素体不锈钢而言,由于不易产生冷裂和自点,轧后可空冷或堆冷,或者在飞剪前设穿水冷却装置以实现余热淬火;生产马氏体不锈钢时,由于容易产生冷裂,不能进行穿水冷却而直接进入冷床,冷床的结构不同于生产普碳钢的冷床,一种办法是采用经改进的步进式齿条冷床,如意大利Danieli公司设计的1989年投产的美国TeledyneAIIvac厂的冷床,它伸入高温侧的一个槽中,槽可以放上水使冷床淹没在水中,这样可以对奥氏体不锈钢进行水淬,而不要水淬的品种则直接进入冷床,该冷床还可以装备绝热罩,可使轧件延迟冷却,在罩上绝热罩进行延迟冷却时,其冷却速度相当自然冷却速度的一半,较低的冷却速度对确保马氏体不锈钢的滞后脆性裂纹是非常重要的;另一种办法是:把冷床的一半设计成链式,另一半为普通的齿条式冷床,辊道设保温罩,生产马氏体不锈钢时,飞剪把轧件切成倍尺或定尺,如为倍尺,经链式冷床快速拉入保温罩中,在罩中切成定尺再送入保温坑,定尺直接拉入保温坑中进行缓慢冷却。

不锈钢棒材不同系列简介

不锈钢棒材2系列

202不锈钢棒材:属于铬-镍-锰奥氏体不锈钢,性能优于201不锈钢。
201不锈钢棒材:属于铬-镍-锰奥氏体不锈钢,磁性比较低。

不锈钢棒材3系列

316L不锈钢棒材:316不锈钢中含钼且含碳量低,在海洋中和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢!(316L低碳、316N含氮高强度高、316F不锈钢含硫量较高,易削不锈钢。
304L不锈钢棒材:作为低碳的304钢,在一般情况下,耐腐蚀性与304相似,但在焊接后或者消除应力后,其抗晶界腐蚀能力优秀,在未进行热处理情况下,也能保持良好的耐腐蚀性。
304不锈钢棒材:具有良好的耐蚀性,耐热性,低温强度和机械特性,冲压,弯曲等热加工性好,无热处理硬化现象。用途:餐具,橱柜,锅炉,汽车配件,医疗器具,建材,食品工业(使用温度-196°C-700°C)。
310不锈钢棒材:主要特点是:耐高温,一般使用锅炉内,汽车排气管.其他性能一般。
303不锈钢棒材:通过添加少量的硫、磷使其较304更易切削加工,其他性能与与304相似。
302不锈钢棒材:302不锈钢棒广泛用于汽车配件、航空、航天五金工具,化工。具体如下:工艺品,轴承,滑花,医疗仪器,电器等。特性:302不锈钢球属于奥氏体型钢,与304比较接近,但是302的硬度更高一些,HRC≤28,具有良好的防锈及防腐性。
301不锈钢棒材:延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。
302不锈钢球属于奥氏体型钢,与304比较接近,但是302的硬度更高一些,HRC≤28,具有良好的防锈及防腐性。

不锈钢棒材4系列

408—耐热性好,弱抗腐蚀性,11%的Cr,8%的Ni。
409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。
410不锈钢棒材:属于马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。
416—添加了硫改善了材料的加工性能。
420不锈钢棒材:“刃具级”马氏体钢,类似布氏高铬钢这种的不锈钢。也用于刀具,可以做的非常光亮。
430不锈钢棒材:铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和抗腐蚀性要差。
440—高强度刃具钢,含碳稍高,经过适当的热处理后可以获得较高屈服强度,硬度可以达到58HRC,属于最硬的不锈钢之列。见的应用例子就是“剃须刀片”。常用型号有三种:440A、440B、440C,另外还有440F(易加工型)。

不锈钢棒材用途

主要用于飞机发动机叶片、机匣、紧固件、燃烧室、盘、轴,燃烧室外壁、液氧煤油发动机,弹体、汽瓶、推进装置等。广泛应用于航天、航空、原子能、核能、石油、化工、以及食品、环保、海洋开发、锅炉热交换器等领域中。

不锈钢棒材棒材综述

不锈钢棒材棒材种类

棒材是一种简单断面型材,一般是以直条状交货。棒材的品种按断面形状分为圆形、方形和六角形以及建筑用螺纹钢筋等几种,后者是周期断面型材,有时被称为带肋钢筋。棒材的断面形状最主要的还是圆形。国外通常认为,棒材的断面直径是Φ9~300mm。国内在生产时约定俗成地认定为:棒材车间的产品范围是断面直径为Φ10~50mm。
棒材的断面形状简单,比起线材一般断面大很多,因此散热慢,允许轧制时间长,头尾温差大的问题不突出,但上限产品容易压缩比不足。与其他热轧一样,为能轧制高尺寸精度的产品,必须保证加热均匀一致,轧机刚度尽可能的高,轧制中,做到冷却一致。轧制中还有磨损带来孔型的变化,影响轧制的持久稳定。

不锈钢棒材棒材用途

现代国民经济包含着许多部门,如工业,农业,交通运输业,建筑业,商业,卫生业等,都是国民经济的重要组成部分。而冶金工业是现代工业的重要组成部分。冶金工业为机械制造业提供优质的原料,机械工业反过来才能为其它行业提供优良的机械装备。
棒材广泛用于建筑、机械、汽车、船舶等工业领域,其中70%棒材用作建筑,其余用作各类轴、螺栓、螺母、锚链、弹簧等用材。因此钢铁工业的发展有着非常重要的意义。我国是一个发展中国家,住房尚需大量发展,建筑用钢的需求在很长一段时间内都将是很高的。另外随着人民生活水平的提高,相应汽车用钢的需求也会越来越多。除螺纹钢筋直接应用于建筑之外,有相当部分加工成各种轴类零件。

不锈钢棒材棒材生产的质量控制

由于棒的用途广泛,因此市场对它们的质量要求也是多种多样的,根据不同的用途,对力学强度、冷加工性能、热加工性能、易切削性能和耐磨耗性能等也各有所偏重。总的要求是:提高内部质量,根据深加工的种类,材料本身应具有合适的性能,以减少深加工工序,提高最终产品的使用性能。
建筑用材要求在较高的屈服强度下,保持一定的延伸率。用作建筑材料的螺纹钢筋,主要是要保证化学成分并具有良好可焊性,要求物理性能均匀、稳定,以利于冷弯,并有一定的耐蚀性。作为建筑用材,提高尺寸精度和机械性能的均匀程度,可以节省大量钢材,同样对于加工轴类,也可减少车削,降低成本。
机械零件要求机加工性能良好,加工后为保证使用时的机械性能,还要进行淬火、正火或渗碳等热处理。有些产品还要进行镀层、喷漆、涂层等表面处理。
棒材经过控轧控冷,也可提高使用性能,这在轧制过程可以通过工艺的控制来实现。

不锈钢棒材不锈钢棒材生产的发展

棒线材生产已有200多年的历史。尽管板带钢产品比重迅速增加,其生产技术日趋完善,生产成本显著下降,但是棒线材产品仍然占据其而不可取代的地位。正是由于这个原因,其生产技术发展水平正日新月异地飞速发展。
近20年是我国型钢生产技术飞速发展的20年。20年前,我国型钢装备水平和生产技术约落后水平30年,而今天,其装备水平大体接近水平。我国型钢生产技术用20年的时间,走过了约50年的发展路程。
20世纪50年代我国钢产量很低,生产的钢筋品种有限,国有钢铁企业也只能生产3号光圆钢筋(I级钢筋)和5号螺纹钢筋,屈服强度标准值分别为235,275Mpa;20世纪60年代开始研制16MnSi(后改为20MnSi,也称II级钢筋)和25MnSi(也称班级钢筋)2种低合金带肋钢筋,实际上研制成功并大量生产的是20MnSi钢筋,而25MnSi钢筋产量有限,两者屈服强度标准值分别为335,375Mpa;同时研制并投人生产的还有44Mn2Si等带肋钢筋(也称N级钢筋),其主要用于经热处理或冷拉后的预应力钢筋。
20世纪50年代,我国正处于国民经济建设的高潮,钢筋供需矛盾较为突出,为发展冷加工生产,通过对低强度钢筋的冷轧、冷拔、冷扭或冷拉等冷加工手段,使钢筋冷作硬化,在牺牲原钢筋塑性的条件下,获得较高的屈服强度。冷加工钢筋主要采用细直径盘条生产冷拔钢丝,其既用作预应力混凝土中、小型构件中的预应力钢筋,也部分用作某些钢筋混凝土构件中的受力钢筋和构造钢筋;另外,通过冷拉后的粗带肋钢筋,用作大、中型预应力混凝土构件中的预应力钢筋,部分用作钢筋混凝土构件中的配筋。
20世纪80年代,小规格钢筋产量和规格不能满足工程建设需求,国内中小型企业针对这一形势,开始引进或自制冷轧带肋钢筋设备,轧机数量和产量达到了相当规模。此外,还生产了小规格、断面为矩形的冷轧扭钢筋用作钢筋混凝土楼板中的配筋,原来热轧带肋钢筋没有小规格的空缺,为工程建设所需钢筋规格的配套起到了辅助作用。
20世纪80年代开始研制,90年代正式投人生产的新一代热轧带肋钢筋有2种:一种是以微合金元素(V,Ti,Nb)为基础的HRB400钢筋,另一种是采用余热处理工艺生产的RRB400(KL400)钢筋(包括按英国BS标准生产的钢筋),使我国钢筋在化学成分上进行了更新换代;余热处理钢筋既可用于出口,也可为国内工程选用。在同一时期,引进了相当数量的低松弛高强度钢绞线生产线,使这种高质量的预应力钢筋在公路、房屋、铁路及其他工程领域获得了广泛应用,推动了预应力混凝土结构的发展。
20世纪80~90年代,我国从国外引进了小型连轧技术,经移植、消化、再开发,把小型连轧生产技术发展到了极至,国外产量只有30~40万t/年的小型轧机,在我国其产量可提高到80~100万t/年,甚至更高。
促进我国小型轧机技术全面提升的3个最主要因素是全线无扭转轧制、采用短应力线轧机和全面推广切分轧制技术。小型轧机单产的提高,促成其与高效转炉一连铸更好地配合,利于采用热送一热装工艺,进一步节能降耗、降低生产成本。
目前我国小型和棒材的生产现状为:到2004年,我国小型和棒材生产拥有3个一,即轧机套数、年生产能力及占钢材总量的比值(连轧机套数已超过100套,年生产能力约6000万t,连轧机的轧制能力可达到生产总量的70%)。目前我国小型和棒材轧机的总体装备和生产技术已达水平,并具有以下特点:
1.新建轧机大多为18架,分粗、中、精轧机组,每组6架,平立交替布置,实现无扭连轧。采用步进式加热炉,全数字式直流传动系统。坯料为150mm×150mm连铸方坯,长10~12m。产品规格为Ф10~Ф40,Ф20以下产品采用切分轧制。
2.产品以带肋钢筋为主。不生产带肋钢筋的小型连轧机只有杭州钢铁公司、石家庄钢铁公司和邢台钢铁公司等几家。
3.对提高产量有益的无头轧制、切分轧制技术等,我国使用和推广的力度高于工业发达国家。如无头轧制技术,到2004年,唐山钢铁公司引进了意大利DANIELI公司的技术;邢台钢铁公司第二高线厂引进了日本NKK公司的技术;通化钢铁公司自行开发了棒线材无头轧制技术。而值得注意的是,该技术在美国、日本、德国和俄罗斯等产钢大国尚没有很好的应用实例,日本NKK公司的棒线材无头轧制技术,在日本也仅有1家试验厂。棒材的3切分和4切分轧制技术,国内企业的研究和推广使用热情很高,也有很成熟的技术,但仍有国外公司在我国专门推广该技术。
4.对提高产品质量、满足用户需求有益而影响产量的技术,在我国的使用和推广力度低于水平国家。这些技术包括:
(1)棒材自由规格减定径技术。其可为用户提供任意规格的产品,适应多品种、小批量市场需求。
(2)棒材高精度轧制技术。
(3)合金钢和低合金钢棒材在线控制冷却技术。
(4)多钢种、小批量棒材的市场开发。
(5)专用小型材的市场开发。
工业*国家的型钢轧制品种多达万余种,而我国的热轧型材品种只有上千种。差距的是专用小型材。这些型材多用于汽车、纺织、电机、农业等等,我国在这方面的工作与20年前相比进步不大。上述特点说明我国小型与棒材生产还处于市场需求旺盛阶段。钢材生产厂取得效益主要仍依靠产量来实现。
从我国的热轧带肋钢筋发展史可以看出,我国热轧带肋钢筋的生产水平不断提高,普通钢筋从低碳钢、低合金钢向微合金钢发展;预应力钢筋从强度偏低、松弛较大向高强度、低松弛的钢绞线、钢丝发展;同时,冷加工钢筋的发展趋向是:冷拔钢丝、冷拉钢筋从广泛采用到被淘汰出局,而作为细直径的冷轧钢筋和冷轧扭钢筋,仍将是普通钢筋的一种补充,它们的存在与发展,取决于其产品的质量、价格和售后服务,它们将通过市场机制与细直径的热轧带肋钢筋进行竞争。
热轧带肋钢筋广泛用于被广泛用于民用建筑、高层建筑、重点工程:机场、港口、高速公路、桥梁、电厂等建设,是一种非常重要的钢材。型钢生产在轧钢车间生产中占有重要的地位,据不统计,目前我国每年生产的型材占钢材生产总数量的50%左右,因此,掌握型钢生产理论与工艺,对提高型钢产品质量和精度,开发新品种、新工艺、新设备,完善生产自动化和计算机控制技术,具有很大的现实意义。
参考资料


目录
相关产品RElATED PRODUCTS